On $\left(K_{q} ; k\right)$-Stable Graphs

by Matthew Ridge

Under the direction of Prof. John Caughman

With second reader Prof. Paul Latiolais

On $\left(K_{q} ; k\right)$-Stable Graphs

An article by Andrzej Żak, first published online the $15^{\text {th }}$ of October 2012.

Introduction

- Definitions
- General Bounds
- Complete Graphs, K_{q}
- Future Work
- Conclusion

Definitions

-What is a graph?

- Order of a graph.
- Size of a graph.
- Graph Isomorphism.
- Cycles, C_{n}
- Complete Graphs, K_{n}
- Vertex Stable Graph.
- Minimum vertex stable graph.
- Size of a minimum vertex stable graph.

What is a graph?

A (simple) graph G consists of a vertex set $V(\mathrm{G})$ and an edge set $\mathrm{E}(\mathrm{G})$ where $\mathrm{E}(\mathrm{G})$ is a set of 2-element subsets of $\mathrm{V}(\mathrm{G})$. When $\{x, y\} \in \mathrm{E}(\mathrm{G})$ we write $x \sim y$. A vertex that does not belong to any edge is called an isolated vertex.

Let x, y be vertices of G , then if x and y share an edge we denote that edge as $\{x, y\}$.

What is a graph?

- Order of a Graph: Let G be a graph, then the order of G is defined as the number of vertices it has, denoted:

$$
|G|:=|V(G)| .
$$

- Size of a Graph: Let G be a graph, then the size of G is defined as the number of edges it has, denoted:

$$
\|G\|:=|E(G)| .
$$

Example

Call the following graph G.

- What is the Order of this graph?
- What is the size of the graph?

Example

- What is the Order of this graph?

$$
|G|=10
$$

- What is the size of the graph?

$$
\|G\|=15
$$

Graph Isomorphism

Two graphs G and H are isomorphic if there is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that

$$
u \sim v \text { iff } f(u) \sim f(v) .
$$

Example

Example

Cycle graphs, C_{n}

A cycle, more commonly called a closed walk, consists of a sequence of vertices starting and ending at the same vertex, with each two consecutive vertices in the sequence adjacent to each other in the graph.

Example: C_{7}

Cycle graphs, \boldsymbol{C}_{n}

Complete Graphs, $\mathbf{K}_{\mathbf{q}}$

A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge.

Example: K_{7}

Complete Graphs, $\mathbf{K}_{\mathbf{q}}$

K_{4}

K_{7}

K_{11}

Vertex Stable

A graph G is called (H;k)-vertex stable or (H;k)stable if G contains a subgraph isomorphic to H even after removing any k of its vertices.

Example: Consider the Petersen Graph and we're going to check its stability with $\mathrm{H}=\mathrm{C}_{5}$.

Example

Is the Petersen Graph $\left(C_{5} ; 0\right)$-stable?

Example

Is the Petersen Graph $\left(C_{5} ; 1\right)$-stable?

Example

Is the Petersen Graph ($C_{5} ; 2$)-stable?

Example

Example

Is the Petersen Graph $\left(C_{5} ; 3\right)$-stable?

Example

minimum ($\mathrm{H} ; \mathrm{k}$)-stable graph

If G has the minimum size of any $(H ; k)$-stable graph, then

$$
\|G\|:=\operatorname{stab}(H ; k),
$$

and we refer to G as a minimum ($H ; k)$-stable graph.

Further assumptions

We will not consider isolated vertices in any of the graphs in question.

Why? After adding to or removing from an ($H ; k$)stable graph any number of isolated vertices, we still have an (H;k)-stable graph with the same size.

General Bounds

The goal is to find a lower bound on the size of our stable graph, G, for selected graph H and arbitrarily chosen k.

Major problem to address:
We need to be able to remove any set of k vertices without losing a subgraph of H .

Theorem

Let δ_{H} be the minimum degree of H . If G is a

 minimum ($H ; k$)-stable graph, then$$
|G|-\delta_{H} \sum_{v \in V(G)} \frac{1}{d_{G}(v)+1} \geqslant k+1 .
$$

Moreover, if G is not a union of cliques, then the inequality is strict.
(This is the light at the end of the tunnel.)

Lemma

> If G is a minimum ($H ; k$)-stable graph, then every vertex and every edge of G belongs to some subgraph of G isomorphic to H .

Proof: Roughly, imagine that you have a minimum (H;k)-stable graph where there is a vertex or edge that doesn't belong to a subgraph of G isomorphic to H. If that edge or vertex is never used in any of the isomorphisms, then its removal doesn't affect the stability of G. Hence G was not minimum! \quad

Proposition

Let δ_{H} be the minimum degree of a graph H . Then in any minimum ($H ; k$)-stable graph G ,

$$
d_{G}(v) \geq \delta_{H}
$$

for each vertex $v \in V(G)$.
Proof: Follows from the previous lemma.

The Ordering...

Fix any ordering σ of $\mathrm{V}(\mathrm{G})$. Let $\operatorname{deg}_{\sigma}(v)$ denote the number of neighbors of that are on the left of v in ordering σ. Then let S_{σ} denote the set of all vertices with $\operatorname{deg}_{\sigma}(v) \leq \delta_{H}-1$.
If remove from G the set of vertices in $V(G) \backslash S_{\sigma}$, the claim is that this will induce a subgraph on G that will contain no copies of H.

What?

Example

Consider a labeling of our previous graph, the Petersen Graph. Further, suppose that H is again C_{5}.

Example

Observe that

$$
\begin{aligned}
S_{\sigma} & :=\left\{v_{i} \mid \operatorname{deg}_{\sigma}\left(v_{i}\right) \leq 1\right\} \\
& =\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{7}\right\}
\end{aligned}
$$

Hence
$V(G) \backslash S_{\sigma}:=\left\{v_{5}, v_{8}, v_{9}, v_{10}\right\}$

n	1	2	3	4	5	6	7	8	9	10
$\operatorname{deg}_{0}\left(v_{n}\right)$	0	1	1	1	2	1	1	2	3	3

Example

Observe that

$$
\begin{aligned}
S_{\sigma}: & =\left\{v_{i} \mid \operatorname{deg}_{\sigma}\left(v_{i}\right) \leq 1\right\} \\
& =\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{7}\right\}
\end{aligned}
$$

Hence
$V(G) \backslash S_{\sigma}:=\left\{v_{5}, v_{8}, v_{9}, v_{10}\right\}$

n	1	2	3	4	5	6	7	8	9	10
$\operatorname{deg}_{\sigma}\left(\mathrm{v}_{\mathrm{n}}\right)$	0	1	1	1	2	1	1	2	3	3

So how does it work?

In general, with any ordering we destroy all copies of H by consecutively eliminating all vertices of S_{σ}. Each vertex in S_{σ} has left degree $\leq \delta_{H}-1$ and thus cannot be the rightmost vertex of any copy of H in the induced subgraph.

From this we get the following:

$$
|G|-\left|S_{\sigma}\right| \geq k+1
$$

What next?

We need to find a way to approximate the size of S_{o}. To do this we will need...

Probability and Expected Values.
Lets count some stuff!

The story.

Our story begins with letting o be an ordering on a vertex set of size n... sitting somewhere in this ordering is an arbitrary vertex v, with degree equal to $d_{G}(v)$. Also sitting within this ordering is all of v 's neighbors.

Choosing spots

The vertex v has $d_{G}(v)$ neighbors for which each gets a spot in the ordering. Don't forget v needs a spot too! So we get the following:

$$
\binom{n}{d_{G}(v)+1}
$$

Choosing spots

Recall that $\operatorname{deg}_{\sigma}(v) \leq \delta_{H}-1$. We have that if we assign v to any of these first δ_{H} spots, we satisfy $\operatorname{deg}_{\sigma}(v) \leq \delta_{H}-1$. Hence we get:

$$
\binom{n}{d_{G}(v)+1}\left(\delta_{H}\right)
$$

The rest of the counting is assigning the remaining vertices to their spots and dividing by the total number of permutations on n vertices.

The Probability

$$
\begin{aligned}
\operatorname{Pr}\left(\operatorname{deg}_{\sigma}(v)<\delta_{H}\right) & =\frac{\binom{n}{d_{G}(v)+1}\left(\delta_{H}\right)\left(d_{G}(v)\right)!\left(n-d_{G}(v)-1\right)!}{n!} \\
& =\frac{\delta_{H}}{d_{G}(v)+1}
\end{aligned}
$$

The Expectation

By using a method of expected values we get...

$$
\begin{aligned}
& \operatorname{Pr}\left(v \in S_{\sigma}\right)=\frac{\delta_{H}}{d_{G}(v)+1} \\
& E\left(\left|S_{\mathrm{o}}\right|\right)=\sum_{v \in V(G)} \frac{\delta_{H}}{d_{G}(v)+1}
\end{aligned}
$$

Example

1234	2134	3124	4123
1243	2143	3142	4132
1342	2314	3214	4213
1324	2341	3241	4231
1432	2413	3412	4312
1423	2431	3421	4321

Set $\delta_{H}=2$.

$$
\begin{aligned}
E\left(\left|S_{\mathrm{o}}\right|\right)=\sum_{v \in V(G)} \frac{\delta_{H}}{d_{G}(v)+1} & =\frac{2}{1+1}+\frac{2}{3+1}+\frac{2}{2+1}+\frac{2}{2+1} \\
& =\frac{24}{24}+\frac{12}{24}+\frac{16}{24}+\frac{16}{24}=\frac{68}{24} \approx 2.8 \overline{33}
\end{aligned}
$$

Thus...

$$
E\left(\|_{\Omega}\right)=\sum_{\text {vevo }} \frac{\delta_{d}}{d_{d}(v)+1}
$$

Gives us that

$$
\begin{gathered}
|G|-\left|S_{\mathrm{o}}\right| \geq k+1 \\
|G|-\sum_{v \in V(G)} \frac{\delta_{H}}{d_{G}(v)+1} \geq k+1
\end{gathered}
$$

Corollary

Let H be any graph and let δ_{H} denote the minimum degree of H . Then

$$
\operatorname{stab}(H ; k) \geq(k+1)\left(\delta_{H}+\sqrt{\delta_{H}\left(\delta_{H}-1\right)}-\frac{1}{2}\right)
$$

What?

Corollary

Roughly, with the use of...
Lemma: The expression

$$
\sum_{k=1}^{l} \frac{1}{x_{k}} \text { with } \sum_{k=1}^{l} x_{k}=r, r \in \mathfrak{R}
$$

is minimal if all the x_{j} are equal. (Uses constrained optimization.) Example: Set $r=30$,

$$
\begin{array}{ll}
30=9+8+7+2+2+2 & \frac{1}{9}+\frac{1}{8}+\frac{1}{7}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{947}{504} \approx 1.879 \\
30=5+5+5+5+4+6 & \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{4}+\frac{1}{6}=\frac{73}{60} \approx 1.2167 \\
30=5+5+5+5+5+5 & \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{6}{5}=1.2
\end{array}
$$

Corollary

Using this fact, note that if the average degree of G is defined:
$d_{G}=\frac{2\|G\|}{|G|}$ we get: $\|G\|=\frac{d_{G}|G|}{2}$. Then

$$
\sum_{v \in V(G)} \frac{1}{d_{G}(v)+1} \geq \sum_{v \in V(G)} \frac{1}{d_{G}+1}=\frac{|G|}{d_{G}+1} .
$$

Rearranging the results from our first theorem we get

$$
|G| \geq k+1+\sum_{v \in V(G)} \frac{\delta_{H}}{d_{G}(v)+1} \geq k+1+\frac{|G|}{d_{G}+1} .
$$

Putting all of this together we and applying a bunch of algebra...

$$
|G| \geq(k+1) \frac{d_{G}+1}{d_{G}+1-\delta_{H}} .
$$

Corollary

...and using the quadratic formula on a characteristic polynomial and then applying the first derivative test to verify the minimum point. It follows that...

$$
\|G\|=\left(\frac{d_{G}}{2}\right)|G| \geq \frac{k+1}{2} \cdot \frac{d_{G}\left(d_{G}+1\right)}{d_{G}+1-\delta_{H}} \geq(k+1)\left(\delta_{H}+\sqrt{\delta_{H}\left(\delta_{H}-1\right)}-\frac{1}{2}\right) .
$$

Since G was assumed to be minimal we get that...

$$
\operatorname{stab}(H ; k) \geq(k+1)\left(\delta_{H}+\sqrt{\delta_{H}\left(\delta_{H}-1\right)}-\frac{1}{2}\right)
$$

Complete Graphs, $\mathbf{K}_{\mathbf{q}}$

Nice thing about complete graphs: All the vertices have the same degree... so if we set H to be K_{q}, then $\delta_{H}=q-1$.

Couple this fact with our previous theorem, corollary, and TONS of algebra, we get...

Theorem

Let G be a ($\left.K_{q} ; k\right)$-stable graph, $q \geq 2$ and $k \geq 0$ then

$$
\|G\| \geq(2 \mathrm{q}-3)(k+1)
$$

with equality if and only if G is a disjoint union of cliques $K_{2 q-3}$ and $K_{2 q-2^{2}}$.

The equality is simply a nice consequence from selecting cliques of consecutive sizes. Simple algebra proves this... A lot of simple algebra.

The coin problem...

is a mathematical problem that asks for the largest monetary amount that cannot be obtained using only 2 coins of specified denominations (relatively prime).

In other words, there should exist a positive integer such that for any integer greater than it, there exists a linear combination of the two denominations to express the value.

Frobenius Numbers

The largest nonnegative integer that can't be expressed as a linear combination of the two relatively prime denominations is called the Frobenius Number.

Idea by Georg Frobenius.
The following by James Joseph Sylvester:
Given positive integers m, n where $\operatorname{gcd}(m, n)=1$, the Frobenius number $m(a)+n(b)=K$ is given by $m n-m-n$.

Georg Frobenius

Example

$4(1)+5(0)=4$
$4(0)+5(1)=5$
$4(2)+5(0)=8$
$4(1)+5(1)=9$
$4(0)+5(2)=10$
$4(3)+5(0)=12$
$4(2)+5(1)=13$
$4(1)+5(2)=14$ $4(0)+5(3)=15$

Confirming with the closed formula:

$$
\begin{gathered}
m=4, n=5 \\
m n-m-n \\
4 \cdot 5-4-5=11
\end{gathered}
$$

Frobenius number for 4,5 is 11 !
McNugget Problem is a "famous" example of the use for Frobenius Numbers.

Theorem

Let $q \geq 2, k \geq 0$ be non-negative integers. Then

$$
\operatorname{stab}\left(K_{q} ; k\right) \geq(2 q-3)(k-1),
$$

with equality if and only if $k=a(q-2)+b(q-1)-1$ for some non-negative integers a, b. In particular, $\operatorname{stab}\left(K_{q} ; k\right)=(2 q-3)(k-1)$, for $k \geq(q-3)(q-2)-1$.
Furthermore, if G is $\left(K_{q} ; k\right)$-stable graph with

$$
\|G\|=(2 q-3)(k+1)
$$

then G is a disjoint union of cliques $K_{2 q-3}$ and $K_{2 q-2^{2}}$.

Future Work

- Things to think about:
- Uniqueness of minimal stable graph?
- Families of graphs that guarantee certain stability. For example...
- Can prove:
- $C_{k n+k+1}$ is $\left(P_{n^{\prime}} ; k\right)$-stable.
- Conjecture (Fermat-style):
- $C_{k n+k+1}$ is the unique minimal $\left(P_{n} ; k\right)$-stable graph.
- $K_{q, r, s}$ is $\left(C_{2 n+1} ; k\right)$-stable.
- $K_{q, r}$ is $\left(C_{2 n} ; k\right)$-stable.

References

- N. Alon and J. Spencer, The Probabilistic Method, John Wiley, New York, NY, 2nd edition, 2000.
- A. Dudek, A. Szymański, and M. Zwonek, (H; k) stable graphs with minimum size, Discuss Math Graph Theory 28 (1) (2008), 137-149.
- S. Cichacz, A. Görlich, M. Zwonek, and A. Żak, On $\left(C_{n} ; k\right)$ stable graphs, Electron J Combin 18 (1) (2011), \#P205.
- A. Żak, On (Kq;k)-Stable Graphs, J. Graph Theory 74(2) (2013), 216-221.

The End

Thank you!

Special Thanks:
My committee:
John Caughman and Paul Latiolais

My wife, Temris
Mark and Janet

