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Definitions

● What is a graph?

– Order of a graph.

– Size of a graph.
● Graph Isomorphism.

● Cycles, C
n

● Complete Graphs, K
n

● Vertex Stable Graph.

– Minimum vertex stable graph.

– Size of a minimum vertex stable graph.



  

Let x,y be vertices of G, then 
if x and y share an edge we 
denote that edge as 

What is a graph?

A (simple) graph G consists of a vertex set V(G) and 
an edge set E(G) where E(G) is a set of 2-element 
subsets of V(G). When             E(G) we write        . A 
vertex that does not belong to any edge is called an 
isolated vertex.

{x , y}∈ x ~ y

{x , y}.



  

● Size of a Graph: Let G be a graph, then the size 
of G is defined as the number of edges it has, 
denoted:

● Order of a Graph: Let G be a graph, then the 
order of G is defined as the number of vertices 
it has, denoted:

What is a graph?

∣G∣:=∣V (G)∣.

∣∣G∣∣:=∣E (G)∣.



  

Example

Call the following 
graph G.

● What is the Order of 
this graph?

● What is the size of 
the graph?



  

Example

● What is the Order of 
this graph?

● What is the size of 
the graph?

∣G∣=10

∣∣G∣∣=15



  

Graph Isomorphism

Two graphs G and H are isomorphic if there is a 
bijection

such that

f :V (G)→V (H )

u∼v iff f (u)∼ f (v) .



  

Example



  

Example



  

Cycle graphs, C
n
 

A cycle, more commonly 
called a closed walk, 
consists of a sequence 
of vertices starting and 
ending at the same 
vertex, with each two 
consecutive vertices in 
the sequence adjacent to 
each other in the graph.

Example: C
7



  

Cycle graphs, C
n
 

C
3

C
7

C
11



  

Complete Graphs, K
q

A complete graph is a 
simple undirected 
graph in which every 
pair of distinct 
vertices is connected 
by a unique edge.

Example: K
7



  

Complete Graphs, K
q

K
11

K
7

K
4



  

Vertex Stable

A graph G is called (H;k)-vertex stable or (H;k)-
stable if G contains a subgraph isomorphic to H 
even after removing any k of its vertices.

Example: Consider the Petersen Graph and 
we're going to check its stability with H=C

5
.



  

Example

Is the Petersen Graph 
(C

5
;0)-stable?



  

Example

Is the Petersen Graph 
(C

5
;1)-stable?



  

Example

Is the Petersen Graph 
(C

5
;2)-stable?



  

Example



  

Example

Is the Petersen Graph 
(C

5
;3)-stable?



  

Example



  

If G has the minimum size of any (H;k)-stable 
graph, then

and we refer to G as a minimum (H;k)-stable 
graph.

minimum (H;k)-stable graph

∣∣G∣∣:=stab(H ;k ) ,



  

Further assumptions

We will not consider isolated vertices in any of the 
graphs in question.

Why? After adding to or removing from an (H;k)-
stable graph any number of isolated vertices, we 

still have an (H;k)-stable graph with the same size.



  

General Bounds

The goal is to find a lower bound on the size of 
our stable graph, G, for selected graph H and 
arbitrarily chosen k.

Major problem to address:

We need to be able to remove any set of k 
vertices without losing a subgraph of H.



  

Let      be the minimum degree of H. If G is a 
minimum (H;k)-stable graph, then

Moreover, if G is not a union of cliques, then the 
inequality is strict.

(This is the light at the end of the tunnel.) 

∣G∣−δH ∑
ν∈V (G )

1
dG (v)+1

⩾k+1.

Theorem

δH



  

Lemma

Proof: Roughly, imagine that you have a minimum 
(H;k)-stable graph where there is a vertex or edge that 
doesn't belong to a subgraph of G isomorphic to H. If 
that edge or vertex is never used in any of the 
isomorphisms, then its removal doesn't affect the 
stability of G. Hence G was not minimum! ■

If G is a minimum (H;k)-stable graph, then 
every vertex and every edge of G belongs to 
some subgraph of G isomorphic to H.



  

Let      be the minimum degree of a graph H. Then 
in any minimum (H;k)-stable graph G,

for each vertex

Proof: Follows from the previous lemma.  

Proposition

d G(v)≥δH

v∈V (G ) .

δH



  

If remove from G the set of vertices in
the claim is that this will induce a subgraph on G 
that will contain no copies of H. 

Fix any ordering     of V(G). Let              denote the 
number of neighbors of  that are on the left of    in 
ordering   . Then let      denote the set of all vertices 
with

The Ordering...

degσ (v)
v

σ

Sσ

degσ (v)≤δH−1.

V (G)∖ S σ ,

                                                         What?

σ



  

Example

Consider a labeling of 
our previous graph, 
the Petersen Graph. 
Further, suppose that 
H is again C

5
.



  

Observe that

Hence

Example

Sσ :={v i∣degσ(v i)≤1}

={v1 , v2 , v3 , v4 , v6 , v7}

V (G)∖ S σ :={v5 , v8 , v9 , v10}

n 1 2 3 4 5 6 7 8 9 10

deg
σ
(v

n
) 0 1 1 1 2 1 1 2 3 3



  

Observe that

Hence

Example

Sσ :={v i∣degσ(v i)≤1}

={v1 , v2 , v3 , v4 , v6 , v7}

V (G)∖ S σ :={v5 , v8 , v9 , v10}

n 1 2 3 4 5 6 7 8 9 10

deg
σ
(v

n
) 0 1 1 1 2 1 1 2 3 3



  

So how does it work?

In general, with any ordering we destroy all copies 
of H by consecutively eliminating all vertices of       
      Each vertex in      has left degree              and 
thus cannot be the rightmost vertex of any copy of 
H in the induced subgraph.

From this we get the following: 

Sσ . Sσ ≤δH−1

∣G∣−∣Sσ∣≥k+1



  

What next?

We need to find a way to approximate the size 
of       To do this we will need...  

Probability and Expected Values.

Lets count some stuff!

Sσ .



  

The story.

Our story begins with letting     be an ordering on 
a vertex set of size n... sitting somewhere in this 
ordering is an arbitrary vertex     with degree equal 
to            Also sitting within this ordering is all of     
  's neighbors. 

… … … … … …

v ,
d G(v) .

v

… … …v… … …

v1…v2…v3…v…v4…v5…v6

σ



  

Choosing spots

The vertex    has           neighbors for which each 
gets a spot in the ordering. Don't forget    needs a 
spot too! So we get the following:

v d G(v)
v

( n
d G (v)+1)



  

Choosing spots

Recall that                           We have that if we 
assign    to any of these first      spots, we satisfy    
                          Hence we get:

v
degσ (v)≤δH−1.

( n
d G (v)+1)(δH )

δH

The rest of the counting is assigning the 
remaining vertices to their spots and dividing by 
the total number of permutations on n vertices.

degσ (v)≤δH−1.



  

The Probability

Pr (degσ(v)<δH )=
( n
d G(v)+1)(δH )(dG (v))!(n−dG (v)−1)!

n !

=
δH

d G(v)+1



  

The Expectation

Pr (v∈S σ)=
δH

dG (v)+1

E (∣Sσ∣)= ∑
v∈V (G )

δH

dG (v)+1

By using a method of expected values we get...



  

Example

1234 2134 3124 4123

1243 2143 3142 4132

1342 2314 3214 4213

1324 2341 3241 4231

1432 2413 3412 4312

1423 2431 3421 4321

E (∣Sσ∣)= ∑
v∈V (G )

δH

dG (v)+1
=

2
1+1

+
2

3+1
+

2
2+1

+
2

2+1

=
24
24

+
12
24

+
16
24

+
16
24

=
68
24

≈2.833

Set δH=2.



  

Thus...

Gives us that

E (∣Sσ∣)= ∑
v∈V (G )

δH

dG (v)+1

∣G∣− ∑
v∈V (G)

δH

dG (v)+1
≥k+1

∣G∣−∣Sσ∣≥k+1

■



  

Corollary

Let H be any graph and let      denote the 
minimum degree of H. Then

δH

stab(H ;k )≥(k+1)(δH+√δH (δH−1)−
1
2).

                                                         What?



  

Corollary

Roughly, with the use of...

∑
k=1

l
1
xk

∑
k=1

l

xk=r , r∈ℜ

Lemma: The expression

is minimal if all the      are equal. (Uses constrained optimization.)

with

x j

Example: Set r=30,
30=9+8+7+2+2+2 1

9
+

1
8
+

1
7
+

1
2
+

1
2
+

1
2
=

947
504

≈1.879

30=5+5+5+5+4+6 1
5
+

1
5
+

1
5
+

1
5
+

1
4
+

1
6
=

73
60

≈1.2167

30=5+5+5+5+5+5 1
5
+

1
5
+

1
5
+

1
5
+

1
5
+

1
5
=

6
5
=1.2



  

Corollary

Using this fact, note that if the average degree of G is defined:

dG=
2∣∣G∣∣
∣G∣

we get: ∣∣G∣∣=
dG∣G∣

2
.

∣G∣≥k+1+ ∑
v∈V (G)

δH

d G(v )+1
≥k+1+

∣G∣

dG+1
.

Then 

∑
v∈V (G)

1
dG (v)+1

≥ ∑
v∈V (G)

1
d G+1

=
∣G∣

d G+1
.

Rearranging the results from our first theorem we get

Putting all of  this together we and applying a bunch of algebra...

∣G∣≥(k+1)
d G+1

d G+1−δH

.



  

Corollary

∣∣G∣∣=(d G

2 )∣G∣≥
k+1

2
⋅
dG(dG+1)

d G+1−δH

≥(k+1)(δH+√δH (δH−1)−
1
2).

Since G was assumed to be minimal we get that...

stab(H ; k )≥(k+1)(δH+√δH (δH−1)−
1
2).

...and using the quadratic formula on a characteristic 
polynomial and then applying the first derivative test to 
verify the minimum point. It follows that...



  

Complete Graphs, K
q

Nice thing about complete graphs: All the 
vertices have the same degree... so if we set H 
to be K

q
, then δH=q−1.

Couple this fact with our previous theorem, 
corollary, and TONS of algebra, we get...



  

Theorem

Let G be a (K
q
;k)-stable graph,         and        

then
q≥2 k≥0

with equality if and only if G is a disjoint union of 
cliques K

2q-3
 and K

2q-2
.

∣∣G∣∣≥(2q−3)(k+1)

The equality is simply a nice consequence from 
selecting cliques of consecutive sizes. Simple 
algebra proves this... A lot of simple algebra.



  

The coin problem...

is a mathematical problem that asks for the 
largest monetary amount that cannot be 
obtained using only 2 coins of specified 
denominations (relatively prime).

In other words, there should exist a positive 
integer such that for any integer greater than it, 
there exists a linear combination of the two 
denominations to express the value. 



  

Frobenius Numbers

The largest nonnegative integer that can't be 
expressed as a linear combination of the two 
relatively prime denominations is called the 
Frobenius Number.

Georg Frobenius

Idea by Georg Frobenius.

The following by James Joseph Sylvester:

Given positive integers m,n where                 
the Frobenius number                          is given 
by

m(a)+n(b)=K
mn−m−n.

gcd (m ,n)=1,



  

Example

Frobenius number for 4,5 is 11!

4(1)+5(0)=4
4(0)+5(1)=5
4(2)+5(0)=8
4(1)+5(1)=9

4(0)+5(2)=10
4(3)+5(0)=12
4(2)+5(1)=13
4(1)+5(2)=14
4(0)+5(3)=15

⋮

McNugget Problem is a “famous” 
example of the use for Frobenius 
Numbers.

m=4,n=5
mn−m−n

4⋅5−4−5=11

Confirming with the closed formula:



  

Theorem

Let                   be non-negative integers. Then 

with equality if and only if                                            
for some non-negative integers         In particular,

Furthermore, if G is            -stable graph with

then G is a disjoint union of cliques K
2q-3

 and K
2q-2

. 

q≥2, k≥0 

stab(K q ; k )≥(2q−3)(k−1) ,

k=a (q−2)+b(q−1)−1
a ,b.

stab(K q ; k )=(2q−3)(k−1) , for k≥(q−3)(q−2)−1.

(K q ; k )

∣∣G∣∣=(2q−3)(k+1)



  

Future Work

● Things to think about:

– Uniqueness of minimal stable graph?

– Families of graphs that guarantee certain stability. For 
example...

● Can prove:

– C
kn+k+1

 is (P
n
;k)-stable.

● Conjecture (Fermat-style):

– C
kn+k+1

 is the unique minimal (P
n
;k)-stable graph.

– K
q,r,s

 is (C
2n+1

;k)-stable.

● K
q,r

 is (C
2n

;k)-stable.
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(C n ; k )



  

The End

Thank you!
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My committee: 
John Caughman 
and Paul Latiolais

My wife, Temris
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